Basics of Vehicle Truck and Suspension Systems and Fundamentals of Vehicle Steering and Stability

Ralph Schorr, PE Senior Product Development Engineer

Vehicle/Truck Dynamicist

Course Agenda

- Truck Nomenclature
- Wheel/rail influences
- Truck Dynamics
 - Physics
- Truck Types
- AAR M-976

• Truck Maintenance

Truck Nomenclature (Bogie) 3-piece truck Sideframe Friction Wedge or Shoe Wheel Adapter, Adapter Pad Spring Group **CCSB** Bolster **Control Springs** Load Springs Axle Bearing

Truck Nomenclature

North American Freight Car Systems

Capacity Tons	GRL Lbs.	Bearing Size	Wheel Diameter Inches
70	220,000	Class E	33
100	263,000	Class F	36
110	286,000	Class K	36
125	315,000	Class G	38

Contact Patch area

Lateral position in mm

Dynamic Influences

- Speed
- Wheel to Rail Contact
- Track Input
- Mass/Inertias (Car Body, Truck Components)
- Friction
- Spring Suspension
- Suspension Dampening

Multimode Dynamics Software

$$m\ddot{z} + c\dot{z} + Kz = 0$$

$$\ddot{z} + \frac{c}{m}\dot{z} + \frac{K}{m}z = 0$$
 $\delta = \frac{c}{m}$, $\omega' = \frac{K}{m}$

$$\ddot{z} + \frac{c}{m}\dot{z} + \frac{K}{m}z = 0 \quad \ddot{z} + \delta \dot{z} + \omega^{3}z = 0$$

Assume Solution:

$$z = A e^{i(wt+\Theta)} \quad \dot{z} = A i \omega e^{i(wt+\Theta)} \quad \ \dot{z} = A i^2 \omega^2 e^{i(wt+\Theta)}$$

Critical Attributes of the Wheel/Rail

RINCIPLES COURSE . MAY 19, 2015

10

Why do wheels have Conicity?

1:12 taper 1:6 taper cylinder

EC = 0.083 EC = 0.167 EC = 0

*Curtis Urbin of TTCI

Wheels conicity in service

• Transit cars = 1:40

• Freight cars = 1:20

Conicity and Rolling Radius

- Slope angle at point of contact
- Rolling Radius Difference
- Effect of Wear on rail and wheel

13

Hertzian Contact Patch - Creep theory

4mm hollow wheel

Contact Patch in curves

TPD rail profile with "average" worn wheel

Angle of high rail contact = 6.65° RRD = -0.11 mm

Angle of high rail contact = 42.26 ° RRD = 10.74 mm

Wheelset instability

Truck Hunting

- High Speed
- Typically worse for empty cars
- Rail friction (~ 8 mph)
- Causes wheel wear and lading damage

Measured in lateral gs rms (0.13gs)

Truck Performance Modes

Twist & Roll 15-25, 50-60 mph

Pitch & Bounce 50–70 mph

Truck Hunting
Truck Warp, Truck Rotation, Wheelset Movement
40+ mph

Carbody Interaction Details

Hopper Car on Pitch and Bounce track

Empty 286k Grain car on Twist and Roll track

Truck Interaction Details

Shoe Force

Warp Stiffness

The warp stiffness design is controlled by the shoe width and force

Carbody / Truck Interaction Details

Carbody Bolster Interface
Side Bearing / Center Plate friction design
accommodates these regimes and must remain
consistent

PRINCIPLES COURSE * MAY 19, 2015

Truck Interaction Details

Passive Steering

- Provides wheelset alignment to reduce rolling resistance
- Designed stiffness enhances performance for these regimes

PRINCIPLES COURSE • MAY 19, 2015

Truck Interaction Details

- Friction Shoe
- Springs

Friction shoe force limited to prevent wheel unloading

Motion Control® Features M-976

M-976 Friction Shoes

• Motion Control® and SSRM

Super Service Ride Control

■ S-2-HD Split Wedge

■ S-2-E

Shoe Types

ASF Shoe Design (MoCo, SSRC)

37.5° Angle

30" Slope Radii, Shaped Slope

Steel Shoe

Accommodates:

Bolster/Side Frame Rotation

Part Variation - Casting, Shoe

Provides:

Shoe Stability - Roll and Sway

Warp Stiffness - Edge Contact

Smooth Action

Long Suspension Life

Shoe Types

S2HD Shoe Design

- 32° Angle
- Split Wedge
- Iron Shoe

WŘI 2015

Suspension Design

Constant

- -ASF Ride Control
- -ASF SSRC
- Buckeye XC-R
- Meridian C-1, Wedge Lock

Variable

- -Motion Control
- ASF Ridemaster
- -Swing Motion
- -Barber S-2-HD

Secondary Truck Suspensions

** Friction Damping ~ F x D

Variable damping

Constant damping

Damping Advantages

Constant Damping:

- Long Service Life
- Moderate Track Ride
- Light Car Truck Warp

Variable Damping:

- High C. of G. Approval
- Ease of Maintenance
- Rough Track Ride
- Service Life Varies by Design

Hydraulic Damping in suspensions?

Hydraulic damping:

- Good Performance
- High Speed
- Service Life?
- Maintenance

33

Truck Maintenance

Most wedges have built-in wear indicators

CCSB must be "long travel"

Truck Inspection

- Shoe Rise
- Column Wear Plate Bolts
- Gibs
- Springs

Frame Braced truck

- Increases warp stiffness
- Typically added to a 3-piece truck

37

Swing Motion® truck

Summary

- Trucks operate as part of an overall system
- Utilize primary and secondary suspensions
- Dynamic performance is dependent on the assembled suspension parts
- Good maintenance is critical to continued performance and overall life of the system

Thank You - Questions

